The time-delayed inverted pendulum: Implications for human balance control

John Milton,1 Juan Luis Cabrera,2 Toru Ohira,3 Shigeru Tajima,4 Yukinori Tonosaki,4 (a) Christian W. Eurich,5 and Sue Ann Campbell6

1Joint Science Department, W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
2Centro de Física I. V. I. C., Caracas 1020-A, Venezuela
3Sony Computer Science Laboratories, 3-14-13 Higashigotanda, Shinagawa, Tokyo 141-0022, Japan
4Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, 4259 Nagatsuda, Yokohama 226-8502, Japan
5Institut für Theoretische Physik, Universität Bremen, D-28359 Bremen, Germany
6Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 23 February 2009; accepted 4 May 2009; published online 29 June 2009)

The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, \(\tau \), be greater than a critical delay \(\tau_c \) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations (“noise”) suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when \(\theta \) exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise. © 2009 American Institute of Physics. [DOI: 10.1063/1.3141429]

A high proportion of falls in the elderly occur while walking.1 Although some of these falls can be attributed to “slips and trips,” for many the immediate cause is unknown. A first step toward the development of strategies to minimize the risk of falling in the elderly is to understand how balance is maintained during locomotion. The question of how best to stabilize the upright position of an inverted pendulum, an unstable fixed point, is a classic problem in control theory2 with applications ranging from the Segway3 to missile guidance systems4 to lifting cranes.5 Typically overlooked in biomechanical applications of the inverted pendulum to human balance control are the effects of time delays.6–11 These delays arise because there is a significant time interval between when a variable is measured and when corrective forces are applied. Here we review issues that arise in determining the stability of the time-delayed inverted pendulum and compare the observations to three paradigms of balance control: (1) mechanical inverted time-delayed pendulum,12–16 (2) stick balancing at the fingertip,17–25 and (3) postural sway during quiet standing.26–32 It is argued that misconceptions about balance control arise when the effects of time delay are ignored.33–35 We draw attention to a novel “passive control” mechanism for maintaining balance that arises from the interplay between random perturbations (“noise”) and delay.35–38 Thus it is possible that interactions between the sole of the foot and the walking surface can, on the one hand, be the cause of the fall and, on the other, be a stabilizing mechanism for minimizing the risk of falling.

I. INTRODUCTION

Concepts derived from considerations of the inverted pendulum arise frequently in discussions of the control of human balance30,31,39 and walking.40–43 This approach has been particularly successful in understanding the changes in the kinetic and potential energies that occur during human
However, applications to the study of human gait and balance stability are made difficult because the precise identity of the controller is not known, and hence the full dynamical system cannot be written down. Consequently the approach has been to use experimental observations to try to determine the nature of the control strategies. Typically these findings are interpreted in the context of models having the general form of an inverted pendulum, such as

$$\ddot{\theta}(t) + \beta \dot{\theta}(t) - \alpha \theta(t) = F_{\text{control}}(t),$$

where α and β are positive constants chosen so that in the absence of control the fixed point is unstable, θ is the vertical displacement angle ($\theta = 0$ corresponds to the upright position, hence the “−”), and F_{control} describes the proposed feedback controller. Particular attention has been given to the fact that neural feedback control mechanisms are time delayed (neural latencies are $\sim 100–500$ ms). We argue that the presence of time delays and random perturbations (noise) place severe restrictions on the nature of feasible control strategies. In this way we draw attention to a number of fundamental problems for balance control with time-delayed feedback that, up until this time, have been overlooked by the neuroscience and biomechanics communities.

II. INSTANTANEOUS CONTROL ($\tau=0$)

The standard engineering approach to the problem of stabilizing an inverted pendulum is depicted schematically in Fig. 1(a). The pendulum is attached to a cart by means of a pivot, which allows the pendulum to rotate freely in the xy plane. Neglecting friction in the pivot, the equations of motion for the full system are

$$\begin{align*}
(m + M)\ddot{x} + F_{\text{fric}} + m\ell \ddot{\theta} \cos \theta - m\ell \dot{\theta}^2 \sin \theta &= F_{\text{control}}, \\
m\ell \ddot{\theta} + \frac{g}{\ell} \cos \theta - \frac{4}{3} mg\ell^2 \dot{\theta} - mg\ell \sin \theta &= 0,
\end{align*}$$

where M is the mass of the cart, ℓ is half the length of the pendulum, i.e., the distance from the pivot to the COM of the pendulum, and F_{control} represents the force that is applied to the cart in the x direction for the purpose of keeping the pendulum upright. The term F_{fric} represents friction between the cart and the track and can be quite complicated for some
experimental setups. In the following we will take $F_{\text{fric}} = \dot{x}$, i.e., simple viscous friction, for concreteness.

When F_{control} is chosen based on the current values of the system variables, it can be shown that one can always find a linear feedback law which depends on all four degrees of freedom that will stabilize the pendulum in the inverted position. This can be seen as follows. Let

$$F_{\text{control}} = k_1 \dot{x} + k_2 \dot{\theta} + k_3 \ddot{x} + k_4 \dot{\theta},$$

where the k_j are to be determined. Then the characteristic equation of the linearization of the equations of motion (3) about the equilibrium point corresponding to the upright position of the pendulum is

$$\Delta(\lambda) = \ell (m + 4M)\lambda^4 + (3k_4 - 4k_2 + 4\ell \delta)\lambda^3 + (3k_2 - 4k_1 - 3(m + M)\ell)\lambda^2 + 3(k_3 - \delta)g\ell + 3k_1 g.$$

(5)

The Routh–Hurwitz criterion states that a necessary condition for all the roots of the above polynomial to be in the left half-plane is that all the coefficients of λ be nonzero and have the same sign. The coefficient of the fourth-order term of characteristic equation (5) is positive. Therefore stability of the upright position requires that the coefficients of all the lower terms also be positive. This observation leads to the following constraints on the state-feedback gain parameters:

$$k_1 > 0, \quad k_3 > \delta,$$

and k_2 and k_3 are bounded by k_1 and k_3:

$$k_2 > \frac{4\ell}{3} k_1 + (m + M)\ell, \quad k_4 > \frac{k_3 - \delta}{3}.$$

(7)

A variety of methods have been developed to determine the “optimal” choices of the k_j which satisfy these criteria (see, e.g., Ref. 2). Note that for this model, when the feedback control stabilizes the pendulum in the upright position ($\theta = 0$) the position of the cart is fixed at $\dot{x} = 0$. It is not possible to stabilize the pendulum at $\theta = 0$ with the cart in an arbitrary position. In the terminology of control theory, the system (3) with feedback control equation (4) is stabilizable but not controllable.

Two approaches can be taken to simplify the analysis for stabilization of the upright position of the inverted pendulum. First, we can neglect the dynamics of the cart. This corresponds to taking $k_1 = 0$ and $k_3 = \delta$ in the feedback law and assuming that the mass of the cart is much less than that of the pendulum, $M + m \approx m$, and produces the model

$$(4 - 3 \cos^2 \theta) \ddot{\theta} + \frac{3}{2} \sin 2\theta \dot{\theta}^2 - \frac{3g}{\ell} \sin \theta = -\frac{3}{m\ell} \cos \theta F_{\text{control}},$$

(8)

with feedback force

$$F_{\text{control}} = k_2 \dot{\theta} + k_4 \dot{\theta}.$$

The constraints (7) for stabilizing the pendulum in the inverted position become

$$k_2 > mg, \quad k_4 > 0.$$

(9)

which agree with those derived in Ref. 11. For the discussion that follows (see Sec. V) we note that the equation for the cart becomes

$$\dot{x} = g \tan \theta - \frac{4}{\ell} \sec \theta \dot{\theta}.$$

Thus when the pendulum is at the inverted position, $\theta = 0$ and $\dot{x} = \dot{\theta} = 0$, the cart is not at a fixed position but moves with some constant speed.

An alternate approach is to assume that the inverted pendulum is stabilized not by the application of forces at the base but by the direct application of torque at the pivot. In this case the model is very simple,

$$\frac{4}{7} m\ell^2 \ddot{\theta} - mg\ell \sin(\theta) = T_{\text{control}},$$

(10)

where the linear feedback control torque is

$$T_{\text{control}} = q_2 \dot{\theta} + q_4 \dot{\theta}.$$

The linearization of Eq. (10) about $\theta = 0$ is very similar to that of Eq. (8). Thus the analysis of Refs. 6 and 11 may be easily restated for this equation. In particular, the pendulum will be stabilized in the upright position for any choice of feedback, satisfying

$$q_2 < - mg\ell, \quad q_4 < 0.$$

It is important to note that in all of these approaches the criteria are derived using linearization, and hence the control is applied locally. Thus for stabilization of the inverted position to be possible it is necessary to first bring the pendulum close to the upright position (θ is small). If a perturbation pushes the pendulum sufficiently far from the upright position the feedback control will fail. This is also true when the feedback is time delayed.

III. STABILIZATION WITH DELAYED FEEDBACK

From the point of view of the human body, the only way to implement the feedback control F_{control} instantaneously is to assume that it is due to the biomechanical properties of the joints, connective tissues, etc. Indeed, historically it was thought that balance control could be entirely due to these biomechanical properties. However, subsequent measurements demonstrated that these forces alone were not sufficient to effectively maintain balance. Neural feedback control mechanisms for balance are time delayed. In other words there is a significant time interval between when the variables are measured and when the forces are applied. Consequently the force applied to the cart becomes

$$F_{\text{control}} = k_1 \dot{x}(t - \tau) + k_2 \dot{\theta}(t - \tau) + k_3 \ddot{x}(t - \tau) + k_4 \dot{\theta}(t - \tau),$$

(11)

where it is assumed that the measurements all occur at the same time. The approaches taken to choose the k_j to stabilize the pendulum depend on the magnitude of τ.
A. Small delay

If the delay τ is small, then one may anticipate that it will have little effect on the system. In this situation, the following approach is commonly used in engineering/control theory:

1. Choose the k_j as if there was no delay using standard control theory techniques.
2. With the chosen k_j, determine the minimum delay τ_d which causes instability.
3. Check that $\tau < \tau_d$.

This is the approach taken in Refs. 13 and 16. We will refer to τ_d as the destabilizing delay.

B. Large delay

The time delays involved in the control of human balance are long. In this case it is necessary to design the control by taking the delay into account. One way to do this is by analyzing the characteristic equation of the linearization of the model with the delayed feedback. For the full cart-pendulum model (3) with the feedback equation (11) this is

$$\Delta(\lambda) = \ell(\ell(M + 4M))\lambda^4 + 4\ell\delta\lambda^3 - 3(M + 5M)\lambda^2 - 3\delta g\lambda$$

$$+ \ell(3k_4 - 4\ell\ell k_3)\lambda^3 + (3k_2 - 4\ell k_1)\lambda^2$$

$$+ 3k_3g\lambda + 3k_1g).$$

(12)

This equation has the same form as Eq. (5); however, some terms are modified because of the presence of the time delay. Thus the stability problem becomes that of determining, for a given set of the physical parameters M, m, δ, ℓ, and g, how to choose the k_j so as to maximize the delay for which the upright position becomes unstable. To do this, one needs to determine how the stability of the upright equilibrium point depends on the choice of k_j as well as the time delay τ. Since this is a five parameter problem, a full analysis is difficult. A more tractable problem is to reduce the number of parameters to 3 (two of the k_j and the delay). This will give a characteristic equation that can be analyzed, but the result will not be optimal. One way of making this reduction is to decouple the dynamics of the cart from the pendulum by neglecting friction between the cart and the pendulum and taking $k_1 = k_3 = 0$ and $M + m = m$. An alternative is to choose two of the k_j so that two of the necessary conditions for stability with zero delay are satisfied. The problem then becomes to determine the region of stability in terms of the other two k_j and the delay. The former approach was taken by Refs. 6 and 11 and the latter by Ref. 12. Both analyses yielded similar results, which we now describe. For fixed values of the physical parameters, there exists a critical delay τ_c such that we have the following:

1. If $\tau > \tau_c$ there are no control parameters that stabilize the pendulum in the upright position.
2. If $\tau < \tau_c$ there are always values of the control parameters that stabilize the pendulum in the upright position. The size of the set of control parameters that stabilize the pendulum decreases as the delay increases.

To illustrate these results consider the characteristic equation (12). Choosing

$$k_2 = \frac{4\ell}{3}k_3 + 5(M + M)g, \quad k_4 = \frac{4\ell}{3}k_3$$

(13)

ensures that those conditions (7) are satisfied. Thus stability for $\tau = 0$ is guaranteed for any choice of k_1 and k_4 satisfying Eq. (6). By analyzing Eq. (12) with $\tau \neq 0$ one can determine, for any τ sufficiently small, a region in the k_1 and k_3 plane where the upright position is stable. As τ increases the region shrinks, until for $\tau = \tau_c$ it disappears entirely. These results are illustrated for the parameter values corresponding to the experimental setup of Ref. 13 in Fig. 2(a). A similar illustration for Eq. (8) with delayed feedback given by Eq. (11) can be found in Ref. 11. Stépán also showed analytically that the critical delay for Eq. (8) is given by $\tau_c = \sqrt{2\ell/3g}$. Restating the analysis of Refs. 6 and 11 for Eq. (10) shows that the critical delay for the torque control model is $\tau_c = \sqrt{8\ell/3g}$. These results show mathematically that the critical delay increases as the length increases, which is consistent with the experimental observation that long sticks are easier to balance at the fingertip than short ones. The corresponding
analysis of Eq. (3) is more difficult, but a numerical investigation shows that \(\tau \) increases as \(\ell \) increases \cite{15}[Fig. 2(b)].

C. Two delays

For any real system it is possible to obtain instantaneous estimates of the force and displacement but not the velocity. Approximating speed requires that measurements be made at two distinct points in time, i.e.,

\[
\dot{\theta}(t) \sim \frac{\theta(t) - \theta(t - \tau)}{\tau},
\]

where \(\tau > 0 \) is the time interval, or delay, between the two measurements. \(\dot{\theta} \) pursed this point in the context of a pendulum model similar to Eq. (10) where

\[
T_{\text{control}} = T(\theta(t - \tau), \dot{\theta}(t - \tau)) ,
\]

where \(\tau_1 = \tau + \tau_2 \). Controllers of this form depend on the state at two different times and are sometimes referred to as \textit{proportional minus delay} control. \cite{58} When \(\tau_2 = 2 \tau \) \(\dot{\theta} \) derived a result similar to those discussed above: for Eq. (10) there is a critical delay, \(\tau_c = \sqrt{4\ell/3g} \), such that if \(\tau < \tau_c \), then it is always possible to choose the parameters to stabilize the pendulum in the upright position.

D. Overdamping

A starting point for investigating the effects of the interplay between noise and delay is to reduce Eq. (1) to a first-order delay differential equation and assume that the effects of noise are additive, i.e., the effects of noise are independent of the state variable. Since postural sway mechanisms are likely to be overdamped in healthy individuals, \cite{29,59} we have \(\gamma \dot{\theta} \gg m\ell^2 \dot{\theta} \), and hence, for small \(\theta \), we have

\[
\dot{\theta} - \gamma \theta + \sigma^2 \xi(t) = f(\theta(t - \tau)),
\]

where the additive Gaussian white noise term \(\xi(t) \) satisfies

\[
\langle \xi(t) \rangle = 0,
\]

\[
\langle \xi(t) \xi(t') \rangle = \sigma^2 \delta(t - t'),
\]

where \(\sigma^2 \) is the variance and \(\delta \) is the Dirac-delta function. Furthermore by taking into account the switchlike properties of the sensory and motor neurons involved in postural control \cite{29,32} we have

\[
f(\theta(t - \tau)) = \begin{cases}
0 & \text{if } |\theta| \leq \Pi, \\
- K & \text{otherwise}
\end{cases}
\]

This reduces the analysis of Eq. (15) to considerations of a first-passage time problem for an unstable fixed point [left-hand side of Eq. (15)] with reintegration into the interval \(-\Pi \leq \theta \leq \Pi \) wherever the threshold \(\Pi \) is crossed.

Current interest has focused on the possibility that the left-hand side of Eq. (15) also contains a time delay. This gives rise to a unstable delayed random walk. \cite{32,33,38} As is shown in Fig. 3, the interplay between noise and delay can transiently stabilize the unstable fixed point, i.e., prolong the first-passage time. These effects are interesting in light of measurements of the reaction time and response time when posture is perturbed. \cite{46} In this study it was observed that the neural time delay, i.e., the time interval between the onset of a 3 cm postural displacement and the initiation of electromyographic activity, is \(~116\, \text{ms} \) (range of 93–137 ms depending on which muscle is recorded). However, the latency to reverse the perturbed movement is much longer, \(~320\, \text{ms} \) (range of 177–492 ms). Thus a passive control mechanism that “fills in the gap” between the time the neural signal arrives at the neuromuscular junction and the time to make a corrective movement would be useful for maintaining balance. This implies that passive control of this form can be part of the control of balance and, by implication, gait stability.

IV. METHODS

A. Delayed controller for inverted pendulum

We used a low friction time-delayed inverted pendulum controller that takes advantage of the properties of the carriage mechanism of dc-motor-operated plotters [Fig. 1(b)]. Previous implementations employing a mechanical cart are described in Refs. 13 and 16. Our system was designed to be capable of controlling both the vertical angle and \(x \) position of the pendulum using separate proportional-integral-derivative (PID) controllers (see below) (Fig. 4). The stick length was 0.39 m and the track length was 0.29 m. A potentiometer placed at the fulcrum of the pendulum detects the vertical displacement angle. A dc servomotor drives the slider on the rail using a timing belt, and the position of the slider is detected by a multirotational potentiometer. The timing belt compliance is very small and does not introduce unwanted poles within the bandwidth of the servomecha-
The stability of the delayed pendulum controller. Slew rate was approximately constant and did not itself affect however, over the range of delay between 1 and 10 ms the amplitude of the transfer function has a peak of about 3 db at frequency times the gain but adds a contribution $-r^b \theta$. The contents of the RAM were read out after a specified time τ and then digital to analog converted to produce an output signal. The delay time τ was controlled by an outside personal computer using the Ethernet. The current sampling period is 1 ms, the maximum signal delay is approximately 4 s, and the granularity of the control is 1 ms.

We used PID controller to regulate the angle of the stick and the position of the cart. A PID controller is a three-term feedback controller: the P component is proportional to the error, i.e., the difference between the current angle and the target angle of the stick or the current and target positions of the cart, the I component is proportional to the integral of the error over some time interval, and the D component is proportional to the derivative of the error. In our case the P component greatly reduced the error; however, because of inertial effects the error could not be reduced to zero. Therefore we included an I component to make the error zero: by summing over a long enough time interval even a small error can produce a big enough drive signal to reduce the error. Finally the D component, which does not effect the error, was adjusted to minimize overshoot. Figure 5 shows the open-loop transfer function of the delayed pendulum controller with and without delay. A time delay is not expected to affect the gain of the transfer function but adds a contribution $-f/t$ to the phase, where f is the frequency. When $\tau=0$, the amplitude of the transfer function has a peak of about 3 db at -9.5 Hz which is related to the damping ratio of the second-order transfer function. When $\tau \neq 0$ this peak increased in magnitude and was shifted to a lower frequency, suggesting that the response of the PID controller is limited by its slew rate (proportional to frequency times the gain). However, over the range of delay between 1 and 10 ms the slew rate was approximately constant and did not itself affect the stability of the delayed pendulum controller.

B. Stick balancing at the fingertip

Stick balancing was performed while the subject was seated comfortably in a chair as described previously. The subjects, ages 18–58 years, were required to keep their back in contact with the chair at all times with their arm extended in front of them. In this position the subject could not see both the position of the tip of the stick and that of the fingertip at the same time in their field of view. Sticks were wooden dowels with diameter of 6.35 mm and length of 0.55 m (i.e., $\ell=0.275$ m). Reflective markers were attached to each end of the stick and three specialized motion cameras (Qualisys Quasus, model 300) detected infrared light reflected from these markers. The image detected by each camera determines two of the spatial coordinates: the third coordinate is determined by triangulation methods involving at least two of the cameras. Subjects reported in this communication that had moderate skill levels had increased their stick balancing skill with practice by about twofold (typically from a mean survival time of 8–12 to 17–25 s for 25 consecutive trials).

We calculated the change in speed of the fingertip, ΔV_f, using the bottom marker attached to the stick as follows:

$$ V(t) = \left\| \frac{\Delta \bar{r}(t)}{\Delta t} \right\|, $$

where the notation $\| \cdot \|$ denotes the norm, and hence

$$ \Delta V_f(t) = V(t + \Delta t) - V(t). $$

![FIG. 4. Block diagrams for (a) PID control and (b) the delay control. For more details see Ref. 14.](image)

![FIG. 5. The effects of changing the time delay on the transfer function of the PID controller: (a) gain and (b) phase.](image)
C. Human postural sway

Measurements of the center of pressure (COP) were obtained by having subjects stand in stocking feet on a pressure platform (Accusway, AMTI). Subjects were asked to look straight away with eyes closed while remaining as still as possible. The sampling frequency was 200 Hz and the data were resampled at 100 Hz.

We analyzed the fluctuations in COP in the context of a correlated random walk. The two-point correlation function $K(s)$ was calculated as

$$K(s) = \frac{1}{N-n} \sum_{i=1}^{N-n} [(x(t_i) - x(t_i + s))^2 + (y(t_i) - y(t_i + s))^2].$$

(18)

For each $s = |t_1 - t_2|$, the two-point correlations are calculated from N data points spanning $N-n$ data intervals of length ns and where x indicates the displacements of the fluctuations in the AP direction and y the displacements in the ML direction. For a correlated random walk,

$$K(s) \sim s^{2H},$$

where H is a scaling factor such that $H > 0.5$ indicates positive correlation (persistence) and $H < 0.5$ indicates negative correlation (antipersistence). For stick balancing we calculated $K(s)$ for the movements of the fingertip in the same way except the fluctuations in the vertical direction z were also included.

All of the experiments involving human subjects were performed according to the principles of the Declaration of Helsinki and informed consent was obtained. Experimental protocols for human postural sway and stick balancing at the fingertip received separate approvals by the institutional review board at Claremont McKenna College.

V. RESULTS

A. Mechanical stick balancing

We first examined the behavior when the PID controller related to the x position was omitted. Since the transfer function is known (Fig. 5), we can determine the dynamics by simply injecting sinusoidal inputs. From this perspective, stability of the upright fixed point means that the input and response frequencies are the same, and instability means that the frequencies are different. Figure 6 shows that the delayed inverted pendulum controller exhibits two behaviors depending on the choice of the delay and frequency of the input. Instability of the upright position was characterized by a difference between the input and response frequencies. For example, when $f = 2$ Hz we have stability when $\tau = 5$ ms [Fig. 6(a)] and closed-loop instability, i.e., “hunting,” when $\tau = 15$ ms [Fig. 6(b)]. However, for $\tau = 15$ ms we observed that stability could be achieved by increasing the input frequency to 4–10 Hz. If we take $\tau = \sqrt{2f/3g} \sim 115$ ms, then for these delays the upright fixed point can be stable. However, we observed that even in the hunting regime the stick remained upright albeit with oscillatory dynamics.

We next examined the behavior of the time-delayed inverted pendulum controller when both the PID controllers for the angle and position were activated. The I loop of the angle PID is absolutely necessary to balance the inverted pendulum since the average error to the right and left is zero only at the balanced angle. This occurs when the control works to make the angle-PID integration error zero. However, the PID-distance controller (negative feedback) for the position stabilizer of the slider functions like a positive feedback for the inverted pendulum and vice versa. In other words, whenever we increase the slider position error so that the position shift is effective in activating the PID-distance controller, we necessarily destabilize the PID-angle controller. On the basis of these experimental results we conclude that we cannot control both the vertical angle and the position of an inverted pendulum, at least when using PID controllers restricted to the horizontal plane (see Sec. VI).

B. Human stick balancing

For stick balancing at the fingertip, there are two ways the stick can fall, and hence, as for mechanical stick balancing, two control problems: (1) the vertical displacement angle θ becomes too large and (2) the position of the hand drifts out of reach of the arm. Our focus here is on the first control problem and, in particular, on the nature of the control that occurs on time scales equal to or less than the neural latency. Figure 7(a) compares the movements of the vertical displacement angle θ, calculated as $\Delta z/\ell$, to the changes in speed, ΔV_f, made by the fingertip. Clearly the relationship between the controlled variable (θ) and controller (ΔV_f) is very different than seen for mechanical stick balancing. Whereas for mechanical stick balancing the controlling forces vary sinusoidally [Fig. 6(b)], those for stick balancing occur intermittently [Fig. 7(b)]. Indeed it has been shown that the times between successive corrective (upward) movements obey a $3/2$ power law. Power laws with this exponent can be accounted for by assuming that one of the control parameters is stochastically forced back and forth across a stability boundary. In other words the balance control system is tuned near or at the “edge of stability.”
interpretation is consistent with the observation that $\tau_u \sim \tau_c = \sqrt{2\ell/3g} \sim 140$ ms where τ_u is estimated using the cross correlation between the movements of the fingertip and tip of the stick (estimates of τ_u using different techniques yield larger values). An alternate interpretation is that these power laws arise because of a time-delayed optimal control mechanism.

Figure 8 shows the two-point correlation function for the movements of the fingertip. For small displacements $H > 0.5$ (observed for nine subjects), and hence there is persistence. The simplest interpretation of this observation is that the upright fixed point is unstable, and hence sufficiently close to this fixed point the system is allowed to drift away. Indeed it has been suggested that for a system at the edge of stability, the fluctuations resemble a delayed random walk whose mean displacement is approximately zero. For the mechanical inverted pendulum, the upright fixed point in the hunting regime is also unstable even though the stick remains upright. However, in this case the dynamics of the controller become clearly oscillatory. For stick balancing it is clear that the behavior of ΔV_f is more complex.

C. Human postural sway

Two concepts are important for understanding the control of human balance during quiet standing: (1) center of mass (COM), the net location of the COM in three dimensional space, and (2) COP, the weighted average of the location of all downward (action) forces acting on the standing surface. Typically, COM is computed by making a weighted average of the COMs of each body segment using a total body model, whereas COP is measured using a force platform. The COP represents the neuromuscular response to imbalances of the body’s COM, i.e., when the COM is displaced from the neutral axis of alignment, compensatory changes must be made in COP to redirect the COM back toward the neutral axis. These compensatory changes are related to neuromuscular forces. Previous studies have shown that on slow time scales (digitization rate of 20 Hz) COP regularly oscillates about COM in the AP direction [similar to Fig. 6(b)]; however, more complex behaviors are seen in the ML direction.

Figure 9(a) shows the fluctuations of the COP in the (x,y) plane for a single subject. For slightly less than one-third of the subjects, $K(s)$ could be described by three scaling regions demarcated by the \downarrow in Fig. 9(b) as described previously. However, for other subjects $K(s)$ could not be represented by three scaling regions. Of these subjects, two patterns could be distinguished, an oscillatory $K(s)$ and a nonoscillatory $K(s)$ [Fig. 9(c)]. In all cases, for small displacements we observed that $H > 0.5$ and for large displacements we observed that $H < 0.5$.
ments $H < 0.5$. The fact that the difference types of $K(s)$ could be observed in the subject, recorded at different times, suggests that the variations in $K(s)$ have a dynamic basis. This interpretation is supported by the fact that all patterns could be reproduced by a simple model for postural sway, namely, Eqs. (15) and (16), by varying the noise intensity [Fig. 9(d)]. The observation that the upright fixed point for postural sway is unstable is consistent with the measured latencies. The COM for a standing human is located approximately at the level of the second sacral vertebrae, i.e., $\ell \sim 1$ m from the standing surface. This gives $\tau = \sqrt{2\ell/3g} = 260$ ms. Thus τ is shorter that the neural time delay but longer than the time delay to reverse the perturbed movement τ_n (Sec III D).

Typically the COP fluctuations are slightly biased in the AP direction (as shown); however, for some subjects the COP fluctuations are not biased or slightly biased to the left or right. There was no relationship between the bias in the COP fluctuations and the type of $K(s)$ pattern observed.

VI. DISCUSSION

Our observations demonstrate that for three paradigms of human balance control, namely, mechanical stick balancing, human stick balancing at the fingertip, and postural sway during quiet standing, the fixed point for the upright position is unstable. This conclusion is supported by direct comparisons of the movements of the inverted pendulum and the controller and, in the case of human balance control, the fact that $H > 0.5$ for small displacements. Mathematical studies of time-delayed feedback control emphasize the importance of measuring the relative magnitudes of τ_n and τ_c. However, there are several problems associated with making decisions about stability based solely on measurements of these delays. First, although $\tau_n > \tau_c$ guarantees stability of the fixed point, $\tau_n < \tau_c$ does not guarantee stability. Second, it is difficult to apply these criteria to human data since estimates of τ_n vary depending on how you measure them (see Secs. V B and V C). Finally, and more importantly, focusing on τ_n and τ_c overlooks the fact that instability can arise simply because of the inherent difficulties of simultaneously controlling the position of the inverted pendulum and the controller using delayed feedbacks. In other words the balanced state is stabilizable but not controllable (see Sec. II). Several empirical observations support this issue as a fundamental mechanism for balance instability: our inability to control a mechanical inverted pendulum with two PID controllers, published time series of COM and COP for postural sway, and the observed continual movements of the hand of even an expert stick balancer.

Currently it is believed that a better way to view the balanced state is as a state in which the vertical displacement angle is confined, or bounded, in some manner within an acceptable range about $\theta = 0$. One way that this can be accomplished is through the appearance of bounded, time-dependent oscillatory types of attractors, e.g., limit cycle, quasiperiodic, chaotic, and so on. It is well established that feedback control with delay can readily generate these behaviors through both supercritical and subcritical Hopf bifurcations. The hunting behavior observed for mechanical inverted pendulums and the COP oscillations about COM recorded in the AP direction for human postural sway suggests that oscillatory types of attractors may be part of the solution. However, there are a number of reasons to believe that the approach taken by the nervous system to control human balance may be fundamentally different than the approaches typically taken by engineers to stabilize a mechanical inverted pendulum. We discuss our reasoning in terms of four additional misconceptions that arise in biomechanical discussions of gait and postural stability when considerations of time delays are omitted.

First, in the application of control engineering concepts to the nervous system it is often implicitly assumed that neural feedback operates continuously. Putting aside considerations of the high costs associated with implementing such strategies, the main problem is that continuous feedback is not desirable for stabilizing an unstable fixed point in the presence of noise and delay. The problem is distinguishing those fluctuations that need to be acted upon by the controller from those that do not. This is because, by definition, there is a finite probability that an initial deviation away from the set point will be counterbalanced by one toward the set point just by chance. Too quick a response by the controller to a given deviation can lead to “overcontrol,” leading to destabilization, particularly when time delays are appreciable. On the other hand, waiting too long runs the risk that the control may be applied too late to be effective. Thus methods based on continuous feedback are not only anticipated to be very difficult to implement by the nervous system but are also unlikely to be effective. One way to achieve effective control in the presence of noise and delay is to use an “act-and-wait” type of control strategy.

An act-and-wait control strategy is a type of adaptive control in which when a corrective force is generated (“act”) it is necessary to “wait” sometime before the next corrective force is generated. One possible way to implement an act-and-wait control strategy is to use a switchlike controller, in which corrective outputs are generated only when the dynamical variables cross preset thresholds. Switchlike adaptive controllers are well known to engineers and have the property that they are optimal when the control is bounded. The intermittent controlling movements observed for both stick balancing at the fingertip [Fig. 7(b) and Ref. 20] are certainly consistent with the notion of discontinuous control. In retrospect, measurements of the two-point correlation function for human postural sway were the first to draw attention to the possibility of an act-and-wait control strategy for balance control. Finally the existence of an adaptive type of controller for postural balance might explain the observation that although balance instability increases in those elderly subjects who have a prolonged τ_n, these subjects nonetheless remain upright most of the time.

The second misconception that has arisen in biomechanical discussions of gait and posture stability as a consequence of neglecting the importance of time delays is the tendency to equate oscillations with the notion of passive feedback, i.e., feedback that relies solely on the biomechanical properties of joints and their associated connective tis-
sues (see, for example, Refs. 30 and 31). Indeed the afore-
mentioned oscillations of COP about COM in the AP
direction during postural sway were initially interpreted
in terms of a harmonic oscillator-type model.30 This inter-
pretation led to two untenable additional assumptions, namely, (1)
damping was precisely zero (not true29,36) and (2) balance
control during quiet standing was entirely maintained by the
biomechanical stiffness of the ankle joint (also not com-
pletely true56,57). In contrast, stable limit cycle oscillations
readily arise in models of delayed inverted pendulums even
when they are damped, either because the feedback is
switchlike29 or because the destabilizing delay is exceeded,
and hence the equilibrium point becomes unstable.13,15,16,51
Thus there is no reason to ignore the effect of damping to
account for the oscillations observed in balance control or
even to assume that the presence of oscillations eliminates
the possibility of active neural feedback control.

A third misconception concerns whether it is possible to
control simultaneously both the angle and the pivot point at
an arbitrary position of the pendulum using linear feedback.
The observations in Sec. II suggest that this is not possible
when 2=0. Our observations suggest that this cannot be
achieved when 2= 0, at least by using PID-type controllers.
This is another reason why the dynamics of human balance
control are so complex (see, for example, Refs. 20, 30, and
52). A closely related issue concerns how the nervous system
estimates the speed (derivative) of a moving object since
speed is included in the feedback controllers used by engi-
ers to stabilize the pendulum’s upright position. In order to
measure a speed it is necessary to obtain measurements at
two points in time. Equation (14) implies that there is likely
to be an intimate relationship between the fact that the ner-
vous system is constructed of delay lines and the estimation
of spatial and temporal derivatives. Certainly the visual sys-
tem has the ability to estimate speed of moving objects65 and
indeed it has been possible to construct a silicon retina that
measures speed by incorporating features that mimic those of
neurons in the retina.64,65 However, it is not known whether
this can also be accomplished by using the nonvisual nervous
system with sufficient accuracy to enable an inverted pendu-
lum to be stabilized. This observation may explain why it is
much easier to balance a light stick at the fingertip with eyes
open than with eyes closed. Along these lines we might
speculate that the continued movements of the hand (and
hence fingertip) in the horizontal plane of even a very expert
stick balancer arise because the nervous system has access
only to poor information regarding the velocity of hand
movements which are not normally located within the visual
field of the balancer during the performance of this task (see
Sec. IV). Moreover it becomes less clear whether changes
observed in gait width are a stabilizing mechanism66–68 or
simply a reflection of the inability of the nervous system to
simultaneously control both gait width and vertical stability.

A final misconception is the belief that random perturba-
tions (noise) have only deleterious effects on balance control.
It is important for the physically oriented reader to note that
neuroscientists working on human balance control typically
use the term noise to refer to either the noiselike components
of muscle activity48 or to externally generated vibratory in-
puts applied to the body.69 It is becoming clear that these
types of noisy inputs can have beneficial effects on balance
control. For example, vibrations applied to the soles of the
feet can stabilize postural sway through the ability of sub-
threshold vibrations to enhance the sensitivity of relevant
sensory neurons via a mechanism known as “stochastic
resonance.”69 Recently attention has focused on the possibil-
ity that noise can directly confine an unstable dynamical sys-
tem close to the origin in the presence of retarded variables.35–38
Thus the observation that postural sway in the elderly is characte-
zized by both increased muscle activity48 and the use of open-loop control for longer time intervals62 may be a consequence of an increased reliance on passive
control mechanisms that arise from the interplay between
noise and delay.

Evaluating control strategies for real dynamical systems
requires careful consideration as to whether it is feasible to
implement the strategy given the inherent limitations of the
resources at hand. Control strategies that involve measure-
ments of displacement and velocity are useful for mechanical
systems, e.g., feedback and feed-forward control, when the
time interval required for the estimation of the velocity can
be made sufficiently short; though even here problems exist.7,8,10
Although these engineering concepts have heavily
invaded the neuroscience literature, it is completely unclear
whether the nervous system attempts the same types of con-
tral that engineers attempt to implement. The nervous system
may take advantage, in some way, of the long delays that are
present to use novel and perhaps more robust control strate-
gies (see also Ref. 70). Near the edge of stability, stochastic
forms of control become possible that depend on the inter-
play between noise and delay.20,35,36 Perhaps the nervous sys-
"em uses adaptive act-and-wait control strategies simply be-
cause they are cheaper to implement and maintain. In any
case, until issues such as these are resolved, we suggest that
conclusions drawn from the application of control engineer-
ing concepts to the nervous system be interpreted cautiously.

ACKNOWLEDGMENTS

We acknowledge support from the National Science
Foundation (Grant No. NSF-0617072) (J.M., J.L.C., and
T.O.), the Instituto Venezolano de Investigaciones Científicas
(J.L.C.), and the Natural Sciences and Engineering Research
Council of Canada (S.A.C.).

1S. R. Lord, C. Sherrington, and H. B. Menz, Falls in Older People: Risk

Factors and Strategies for Prevention (Cambridge University Press,

2K. Morris, An Introduction to Feedback Controller Design (Harcourt

3K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control of

a wheeled inverted pendulum by partial feedback linearization,” IEEE

4I. Flugge-Lotz, Discontinuous and Optimal Control (McGraw-Hill, New

York, 1968).

5T. Emeux, “Nonlinear stability of a delayed feedback controlled container

6G. Stépán, Retarded Dynamical Systems: Stability and Characteristic

Functions, Pitman Research Notes in Mathematics Series Vol. 210 (Wiley,

